A Fast Laplace Transform Based on Laguerre Functions

نویسنده

  • JOHN STRAIN
چکیده

In this paper, we present a fast algorithm which evaluates a discrete Laplace transform with N points at M arbitrarily distributed points in C(N + M) work, where C depends only on the precision required. Our algorithm breaks even with the direct calculation at N = M = 20, and achieves a speedup of 1000 with 10000 points. It is based on a geometric divide and conquer strategy, combined with the manipulation of Laguerre expansions via a dilation formula for Laguerre functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Laguerre Method for Numerically Inverting Laplace Transforms

The Laguerre method for numerically inverting Laplace transforms is an old established method based on the 1935 Tricomi-Widder theorem, which shows (under suitable regularity conditions) that the desired function can be represented as a weighted sum of Laguerre functions, where the weights are coefficients of a generating function constructed from the Laplace transform using a bilinear transfor...

متن کامل

Infinite-series Representations of Laplace Transforms of Probability Density Functions for Numerical Inversion

In order to numerically invert Laplace transforms to calculate probability density functions (pdf’s) and cumulative distribution functions (cdf’s) in queueing and related models, we need to be able to calculate the Laplace transform values. In many cases the desired Laplace transform values (e.g., of a waiting-time cdf) can be computed when the Laplace transform values of component pdf’s (e.g.,...

متن کامل

Infinite-series Representations of Laplace Transforms of Probability Density Functions for Numerical Inversion

Abstract In order to numerically invert Laplace transforms to calculate probability density functions (pdf’s) and cumulative distribution functions (cdf’s) in queueing and related models, we need to be able to calculate the Laplace transform values. In many cases the desired Laplace transform values (e.g., of a waiting-time cdf) can be computed when the Laplace transform values of component pdf...

متن کامل

Efficient computation of passage time densities and distributions in Markov chains using Laguerre method

The Laguerre method for the numerical inversion of Laplace transforms is a well known approach to the approximation of probability density functions (PDFs) and cumulative distribution functions (CDFs) of first passage times in Markov chains. Results are presented that relate the Laguerre generating functions and Laguerre coefficients of a PDF with those of the corresponding complementary CDF. T...

متن کامل

Numerical Inversion of Multidimensional Laplace Transforms by the Laguerre Method

Numerical transform inversion can be useful to solve stochastic models arising in the performance evaluation of telecommunications and computer systems. We contribute to this technique in this paper by extending our recently developed variant of the Laguerre method for numerically inverting Laplace transforms to multidimensional Laplace transforms. An important application of multidimensional i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010